4. Find x and y so that the quadrilateral is a parallelogram.

\[4x - 17 = 2x - 1 \]
\[3y + 5 = 3y - 6 \]

\[x = 8 \]
\[y = 9 \]

Draw a labeled diagram. Show all work.

5. In parallelogram $ABCD$, $\angle A = (2x + 50)^\circ$ and $\angle C = (3x + 40)^\circ$. Find $\angle B$.

\[2x + 50 = 3x + 40 \]
\[x = 10 \]
\[\angle A = 2(10) + 50 = 70 \]
\[\angle B = 180 - 70 = 110^\circ \]

6. In parallelogram $ABCD$, $\angle A = (2x - 10)^\circ$ and $\angle B = (5x + 15)^\circ$. Find $\angle C$.

\[5x + 15 + 2x - 10 = 180 \]
\[x = 25 \]
\[\angle A = 2(25) - 10 = 40^\circ \]
\[\angle C = 40^\circ \]

7. In parallelogram $ABCD$, diagonals \overline{AC} and \overline{BD} intersect at E. If $BE = 4x - 12$ and $DE = 2x + 8$, find x and BD.

\[4x - 12 = 2x + 8 \]
\[x = 10 \]
\[BD = \sqrt{(4(10) - 12)^2} \]
\[= 28(2) \]
\[BD = 56 \]

8a) Find the value of x and y that will make $ABCD$ a parallelogram.

\[m\angle B = (2y - 3x)^\circ \]
\[m\angle C = (x + y)^\circ \]
\[m\angle D = (5x - y)^\circ \]

\[x + y + 5x - y = 180 \]
\[x = 30 \]
\[\angle B = 2(30) - 3(30) = 70 \]
\[\angle D = 5(30) - 80 = 70 \]
\[\angle C = 30 + 80 = 110 \]
\[\angle A = 110^\circ \]

b) Then find the measure of each angle of the parallelogram.

\[m\angle B = (2y - 3x)^\circ \]
\[m\angle C = (x + y)^\circ \]
\[m\angle D = (5x - y)^\circ \]
28

Name ____________

Date ____________

CC Geometry H

HW#28

1) In quadrilateral ABCD, AB = 8, BC = 6, CD = 8, DA = 6, AC = 10, and BD = 10.
 Draw a labeled diagram
 a) State why ABCD is a parallelogram. b) State why □ABCD is a rectangle.
 Both pairs of opp. sides are equal.

A □ with equal diag. rectangle.

2) Based on the markings in each diagram, name the quadrilateral as specifically as possible.

Sample:

Answer: Square
(Equilateral quad. is a rectangle.
Rectangle with 2 = adj. sides is a square)

a) rhombus b) square c) d) rhombus

3) Given: \(\overline{EF} \), \(\angle 2 \) is supplementary to \(\angle 1 \), \(\angle C \equiv \angle 1 \)
 Prove: \(\square ABCD \) is a parallelogram

<table>
<thead>
<tr>
<th>statement</th>
<th>reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\overline{EF}), (\angle 2) is suppl. to (\angle 1), (\overline{BC} \parallel \overline{AB})</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\overline{DC} \parallel \overline{BA})</td>
<td>2. When 2 lines are cut by a transversal, such that alt. int. (\angle s) are (\equiv), the lines are (\parallel)</td>
</tr>
<tr>
<td>3. (\angle 1) is suppl. to (\angle 3)</td>
<td>3. Lin. pairs form suppl. (\angle s)</td>
</tr>
<tr>
<td>4. (\angle 2 \equiv \angle 3)</td>
<td>4. Supplements of the same (\angle) are (\equiv)</td>
</tr>
<tr>
<td>5. (\overline{AD} \parallel \overline{CB})</td>
<td>5. When 2 lines are cut by a transversal, such that corr. (\angle s) are (\equiv), the lines are (\parallel)</td>
</tr>
<tr>
<td>6. (\square ABCD) is a □</td>
<td>6. A quad. w/ both pairs of opp. sides (\parallel)</td>
</tr>
</tbody>
</table>
4) Which criteria for triangle congruence cannot be used to prove the two shaded triangles pictured in this parallelogram are congruent?

(1) ASA (2) SSS (3) SAS (4) HL

5) Given: Isosceles \(\triangle ABC \), \(\overline{CD} \) bisects vertex \(\angle C \), \(\overline{CD} = \overline{DE} \)

Prove: a) \(\triangle ACD \cong \triangle BCD \)
 b) \(\text{ACBE is a parallelogram} \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Isos. (\triangle ABC), (\overline{CD}) bisects vertex (\angle C), (\overline{CD} = \overline{DE})</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle 1 \cong \angle 2)</td>
<td>2. An (\angle) bis. divides an (\angle) into 2 (\angle) halves.</td>
</tr>
<tr>
<td>3. (\overline{CD} \cong \overline{CD})</td>
<td>3. Reflexive Prop.</td>
</tr>
<tr>
<td>4. (\overline{CA} \cong \overline{CB})</td>
<td>4. An Isos. (\triangle) has 2 (\angle) sides.</td>
</tr>
<tr>
<td>5. (\triangle ACD \cong \triangle BCD)</td>
<td>5. SAS</td>
</tr>
<tr>
<td>6. (\overline{AD} \cong \overline{BD})</td>
<td>6. Corr. parts of (\cong) (\triangle)s are (\cong).</td>
</tr>
<tr>
<td>7. (\overline{CE}) and (\overline{BF}) bis. each other.</td>
<td>7. Seg. bisectors divide seg. into 2 (\cong) halves.</td>
</tr>
<tr>
<td>8. (\text{ACBE is a} \bigcirc)</td>
<td>8. A quad. whose diag. bisect each other.</td>
</tr>
</tbody>
</table>

6) Square \(ABCD \) with diagonals \(\overline{AC} \) and \(\overline{BD} \) intersecting at \(E \) is drawn. \(AC = 14x - 34 \) and \(BE = 5x - 7 \).

a) Find \(BD \).
 b) Find \(CD \), in simplest radical form.

\[
2(5x-7) = 14x-34 \\
10x-14 = 14x-34 \\
20 = 4x \\
5 = x \\
\text{AC} = \text{BD} = 14(5) - 34 = \boxed{36 \text{ units}}. \\
18^2 + 18^2 = DC^2 \Rightarrow \sqrt{648} = DC \Rightarrow 18\sqrt{2} = DC.
\]
Aim #29: How do we prove a parallelogram is a rectangle?

Do Now: 1) A rectangle is a parallelogram: Always/Sometimes/Never

2) Which is not true about a rectangle?
 a) Diagonals bisect each other.
 b) Opposite angles are congruent.
 c) Diagonals bisect the angles.
 d) Diagonals are congruent.

3) In rectangle ABCD, AE = 3x + y, EC = 2x + y + 7 and DE = 2y + 3x - 1. Find the values of x and y.

 \[3x + y = 2x + y + 7 \]
 \[2y + 3x - 1 = 3x + y \]

 \[x = 7 \]

 \[2y - 1 = y \]
 \[-1 = -y \]
 \[y = 1 \]

Proving a property of a rectangle:

If a parallelogram is a rectangle, then its diagonals are congruent.

Given: Rectangle GHIJ
Prove: GI \cong HJ

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rect. GHIJ</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. \angle GJ \cong \angle HIJ</td>
<td>2. A rect. is equiangular.</td>
</tr>
<tr>
<td>3. \overline{JI} \cong \overline{IJ}</td>
<td>3. Reflexive Prop.</td>
</tr>
<tr>
<td>4. \overline{GJ} \cong \overline{HI}</td>
<td>4. Opp. sides of a rect. are \cong.</td>
</tr>
<tr>
<td>5. \triangle GJ \cong \triangle HIJ</td>
<td>5. SAS</td>
</tr>
<tr>
<td>6. \overline{GI} \cong \overline{HI}</td>
<td>6. Corr. parts of \cong \triangle s are \cong.</td>
</tr>
</tbody>
</table>
Given: Rect. RSTU, M is midpoint of RS
Prove: ΔUMT is isosceles

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rect. RSTU, M is midpt of RS</td>
<td>0. Given</td>
</tr>
<tr>
<td>2. RM = SM</td>
<td>2. A midpt divides a seg. into 2 ± halves.</td>
</tr>
<tr>
<td>3. RU = ST</td>
<td>3. Opp. sides of a rect. are ±.</td>
</tr>
<tr>
<td>4. XR = XS</td>
<td>4. A Rect. is equiangular.</td>
</tr>
<tr>
<td>5. ΔRUM ≅ ΔSTM</td>
<td>5. SAS</td>
</tr>
<tr>
<td>7. ΔUMT is isos.</td>
<td>7. A Δ w/ 2 ± sides.</td>
</tr>
</tbody>
</table>

1a) In Quadrilateral ABCD, AE = 7x - 1, and EC = 5x + 5. Find AC.

\[
7x - 1 = 5x + 5 \\
2x = 6 \\
x = 3 \\
\[
AC = 7(3) - 1 + 5(3) + 5 = 40u.
\]

b) If DB = 10x + 10, find DB.

\[
10(3) + 10 = 40u.
\]

c) What kind of parallelogram is ABCD and justify your response.

rect. → a Rect. w/ 2 ± diagonals.

2) The length of a rectangle is seven more than the width. A diagonal is one more than twice the width. Find the width, length and the length of the diagonal using an algebraic solution.

\[
a^2 + b^2 = c^2 \\
(w + 7)^2 + (w)^2 = (2w + 1)^2 \\
(w + 7)(w + 7) + w^2 = (2w + 1)(2w + 1) \\
w^2 + 14w + 49 + w^2 = 4w^2 + 4w + 1 \\
dw^2 + 14w + 49 = 4w^2 + 4w + 1 \\
D = 2w^3 - 10w - 48 \\
D = w^2 - 5w - 24 \\
D = (w - 3)(w^2 + 1) \\
w = 8 \\
\frac{w}{w - 3}
To prove a parallelogram is a rectangle, prove one of the following:

1. it has 1 rt. \(\angle \).

2. diagonals are \(\perp \).

3. ***An equiangular quadrilateral is a rectangle.***

Given: \(\square ABCD, CE \perp EA, BF \perp EA \)

Prove: ECBF is a rectangle

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\square ABCD, CE \perp EA, BF \perp EA)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (AD \parallel BC) (\text{or } FE \parallel BC)</td>
<td>2. Opp. sides of a (\square) are (\parallel).</td>
</tr>
<tr>
<td>3. (CE \parallel BF)</td>
<td>3. 2 seg. (\perp) to the same seg. are (\parallel) to each other.</td>
</tr>
<tr>
<td>4. ECBF is a (\square). (\checkmark)</td>
<td>4. A (\square) w/ both pairs of opp. sides (\parallel).</td>
</tr>
<tr>
<td>5. (\angle XE) is a rt. (\angle). (\checkmark)</td>
<td>5. (\perp) lines form rt (\angle)s.</td>
</tr>
<tr>
<td>6. ECBF is a rect.</td>
<td>6. A (\square) w/ one rt. (\angle).</td>
</tr>
</tbody>
</table>

Given: Rect. ABCD
Prove: $\angle CAD \equiv \angle BDA$

Given: Rect. PQRS
Prove: $\angle 1 \equiv \angle 2$
1) Rectangle $ABCD$ is shown below. Find x:

2) The length of two adjacent sides of a rectangle differ by 17. If the perimeter of the rectangle is 146, compute a diagonal and the area of the rectangle. Solve algebraically.

3) Given: Rect. $ABCD$, $\overline{AP} \cong \overline{DN}$
 Prove: a) $\triangle ABP \cong \triangle DCN$
 b) $\overline{AE} \cong \overline{DE}$

<table>
<thead>
<tr>
<th>Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\triangle ABP \cong \triangle DCN$</td>
</tr>
<tr>
<td>$\overline{AE} \cong \overline{DE}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\overline{AP} \cong \overline{DN}$</td>
</tr>
<tr>
<td>$\overline{AB} \parallel \overline{CD}$</td>
</tr>
<tr>
<td>$\angle BAP \cong \angle DCP$</td>
</tr>
<tr>
<td>$\angle ABP \cong \angle DCN$</td>
</tr>
<tr>
<td>$\overline{AE} \cong \overline{DE}$</td>
</tr>
</tbody>
</table>

CC Geometry H
HW #29
Mixed review:
1) Construct the following using a compass and straightedge:
 a. Median from vertex A
 b. Altitude from vertex A.

![Diagram of median and altitude construction]

4) In rectangle $ABCD$ shown below, AC and BD are diagonals. If $m\angle 1 = 49$, find $m\angle ADB$.

![Diagram of rectangle with diagonals]

For #s 5 and 6, refer to rectangle $ABCD$ shown below, with diagonals AC and BD intersecting at R.

5) If $DR = 4(3x - 10)$ and $CR = 3(x - 2) + 12$, find x, AR, AC, and BD.

![Diagram with point R]

6) If $AC = 3(2x + 5) - \frac{1}{4}(4x + 4)$ and $BD = \frac{2}{3}(12x - 3) + 5x$, find x, AC, and DR.

![Diagram with expressions for AC and BD]